Fast sparse fractal image compression

نویسندگان

  • Jianji Wang
  • Pei Chen
  • Bao Xi
  • Jianyi Liu
  • Yi Zhang
  • Shujian Yu
چکیده

As a structure-based image compression technology, fractal image compression (FIC) has been applied not only in image coding but also in many important image processing algorithms. However, two main bottlenecks restrained the develop and application of FIC for a long time. First, the encoding phase of FIC is time-consuming. Second, the quality of the reconstructed images for some images which have low structure-similarity is usually unacceptable. Based on the absolute value of Pearson's correlation coefficient (APCC), we had proposed an accelerating method to significantly speed up the encoding of FIC. In this paper, we make use of the sparse searching strategy to greatly improve the quality of the reconstructed images in FIC. We call it the sparse fractal image compression (SFIC). Furthermore, we combine both the APCC-based accelerating method and the sparse searching strategy to propose the fast sparse fractal image compression (FSFIC), which can effectively improve the two main bottlenecks of FIC. The experimental results show that the proposed algorithm greatly improves both the efficiency and effectiveness of FIC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Fast Image Fractal Compression with Graph-Based Image Segmentation Algorithm

In this paper, the basic theory of image fractal compression is briefly introduced; some typical fractal compression approaches are discussed. Based on this discussion, according to the problem of long encoding time which exists in the typical fractal compression approaches, we propose a fast image fractal compression approach based on the combination of adaptive quad tree compression approach ...

متن کامل

Fractal Image Compression Techniques

Image compression is an essential technology in multimedia and digital communication fields. Fractal image compression is a potential image compression scheme due to its potential high compression ratio, fast decompression and multi resolution properties. Fractal image compression utilizes the existence of self symmetry of images. Since Bransley gave the concept of fractal image compression in ...

متن کامل

Lossless acceleration of fractal image compression by fast convolution

In fractal image compression the encoding step is com-putationally expensive. We present a new technique for reducing the computational complexity. It is lossless, i.e., it does not sacriice any image quality for the sake of the speedup. It is based on a codebook coherence characteristic to fractal image compression and leads to a novel application of the fast Fourier transform-based convolutio...

متن کامل

An Improved Fast Fractal Image Compression Coding Method

The main purpose of image compression is to use as many bits as possible to represent the source image by eliminating the image redundancy with acceptable restoration. Fractal image compression coding has achieved good results in the field of image compression due to its high compression ratio, fast decoding speed as well as independency between decoding image and resolution. However, there is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017